翻訳と辞書 |
Saddle tower : ウィキペディア英語版 | Saddle tower
In differential geometry, a saddle tower is a minimal surface family generalizing the singly periodic Scherk's second surface so that it has ''N''-fold (''N'' > 2) symmetry around one axis. 〔H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988) pp. 83–114.〕〔H. Karcher, Construction of minimal surfaces, in "Surveys in Geometry", Univ. of Tokyo, 1989, and Lecture Notes No. 12, SFB 256, Bonn, 1989, pp. 1–96.〕 These surfaces are the only properly embedded singly periodic minimal surfaces in R3 with genus zero and finitely many Scherk-type ends in the quotient. 〔Joaquın Perez and Martin Traize, The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends, Transactions of the American Mathematical Society, Volume 359, Number 3, March 2007, Pages 965–990〕 == Images ==
http://archive.msri.org/about/sgp/jim/geom/minimal/library/saddletower/main.html
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Saddle tower」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|